《剑指offer》刷题笔记(回溯法):机器人的运动范围



题目描述

地上有一个m行和n列的方格。一个机器人从坐标0,0的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于k的格子。 例如,当k为18时,机器人能够进入方格(35,37),因为3+5+3+7 = 18。但是,它不能进入方格(35,38),因为3+5+3+8 = 19。请问该机器人能够达到多少个格子?

解题思路

和上一道题十分相似,只不过这次的限制条件变成了坐标位数之和。对于求坐标位数之和,我们单独用一个函数实现,然后套入上一道题的代码中即可。

C++版代码实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
class Solution {
public:
int movingCount(int threshold, int rows, int cols)
{
bool* visited = new bool[rows * cols];
for(int i = 0; i < rows * cols; i++)
visited[i] = false;

int count = movingCountCore(threshold, rows, cols, 0, 0, visited);
delete[] visited;

return count;
}

int movingCountCore(int threshold, int rows, int cols, int row, int col, bool* visited){
int count = 0;
if(row >= 0 && row < rows && col >= 0 && col < cols && getDigitSum(row) + getDigitSum(col) <= threshold && !visited[row * cols + col]){
visited[row * cols + col] = true;

count = 1 + movingCountCore(threshold, rows, cols, row+1, col, visited)
+ movingCountCore(threshold, rows, cols, row-1, col, visited)
+ movingCountCore(threshold, rows, cols, row, col+1, visited)
+ movingCountCore(threshold, rows, cols, row, col-1, visited);
}
return count;
}

int getDigitSum(int number){
int sum = 0;
while(number){
sum += number % 10;
number /= 10;
}
return sum;
}
};

系列教程持续发布中,欢迎订阅、关注、收藏、评论、点赞哦~~( ̄▽ ̄~)~

完的汪(∪。∪)。。。zzz

0%